
LLNL-TR-410145

Feasibility of N-Gram Data-Structures for
Next-Generation Pathogen Signature
Design

S. N. Gardner

January 27, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

FY08 LDRD Final report
Feasibility of N-Gram Data-Structures for Next-Generation Pathogen Signature Design
LDRD Project Tracking Code: 08-FS-014
Shea N. Gardner, Principal Investigatory
January 26, 2009
Lawrence Livermore National Laboratory

We determined the most appropriate data structure for handling n-gram (also
known as k-mer) string comparisons and storage for genomic sequence data that will
scale in terms of memory and speed. This is critical to maintain LLNL as the leader in
pathogen detection, as it will guide the design of the “Next Generation” system for
computational signature prediction.

There are two parts to k-mer analysis for signature prediction that we
investigated. First is the enumeration and frequency counting of all observed k-mers in a
sequence database (k-mer is a biological term equivalent to the CS term n-gram). Second
is the down-selection and pairing of k-mers to generate a signature. We determined that
for the first part, suffix arrays are the preferred method to enumerate k-mers, being
memory efficient and relatively easy and fast to compute. For the second part, a subset of
the k-mers can be stored and manipulated in a hash, that subset determination based on
desired frequency characteristics such as most/least frequent from a set, shared among
sequence sets, or discriminating across sequence sets.

The first step of computing all the observed k-mers and their frequencies in a
sequence database poses the memory bottleneck. Initially, we investigated hashing
functions for turning data into a relatively small integer to serve as an index into an array,
to speed up k-mer searches and counts for each k-mer in the sequence database and
eliminating duplicates, figuring that actual k-mer sequences could be stored in flatfiles
without demanding RAM. Conceptually, hashes are appealing, since they can be used as
a dictionary. For a given k-mer stored as the key, any number of alternative data types
can be linked as values, such as the genomes, species, or genes containing that k-mer,
facilitating downstream analysis linking k-mers to taxonomy or function. This may be
fruitful for investigations of advanced/synthetic/engineered biothreats or analysis of
metagenomic or high-coverage, short-read sequence data (e.g. from Illumina
sequencing). Practically, however, we were unable to find a hashing function that met
our needs. Since a hashing function may map several different keys to the same hash
value, we found that once the hash table fills to approximately 25% of available space,
the number of collisions increases, substantially slowing performance to build the hash.
Thus, extremely large memory had to be set aside in advance so that less than 25% of it
would be filled, which was prohibitive for all bacterial genomes. While perfect hashing
algorithms can handle key sets with billions of keys, which we hoped could improve
performance, further reading indicated that they are complicated and less efficient for
dynamic sets (as compared with static sets) as is required to build the hash initially, that
is, the process of scanning all the sequences in the database and adding k-mers to the
hash as new ones are observed. Nor is cuckoo hashing suitable, since it is possible that a
given k-mer can be indexed more than once in the hash. Finally, chain hashing was
eliminated as it requires an extra 64 bits of memory for a pointer, countering our aim for

maximum memory conservation. Thus, we turned to a different approach that did not
require hashing, namely, suffix arrays.

We found that suffix arrays to compute all observed k-mers and their frequency
counts a fast, memory-efficient method for determining k-mer frequencies in large
sequence databases. The memory required for this computation is a function of the
database size, approximately ~33 bytes per DNA base. We used existing suffix array
open source code from http://www.cs.dartmouth.edu/~doug/sarray/ , modifying to handle
long, unsigned int and developing Python scripts for downstream processing of the output
such as determining the N most frequent or infrequent k-mers in a set of sequences. We
can parallelize k-mer frequency counts for data sets too large to fit in RAM by
partitioning the sequence data and then performing an out-of-core merge and sort on the
results from each partition. While this makes the approach scaleable even for data sets
that exceed available RAM, unfortunately, the out-of-core merge sort is slow, so large
memory machines will enable larger datasets to be handled much faster without
partitioning. Currently, sequence datasets over 4 GB must be partitioned in order to be
run on a 32 GB node. Our all_bacteria database containing all available bacterial
complete genome and plasmids was over 5 GB when we did a test run (it is now > 6 GB),
and it required ~12 hours to do the suffix array and merge sort on the 17 partitions with
k=20. Longer k required more time (e.g. k=60 required ~17 hours). We determined that
in all viral genomes, we observe about 35% of the number of k-mers one would expect to
see in a random sequence database of that size for k between 20 and 60. Similarly, for
bacteria, one observes 45% of the expected number.

We provided test code to Maya Gokhale, Dave Fox, Eric Greenwade, and a
collaborator at U. Houston for benchmarking memory requirements on different
machines, including SiCortex, Violin flash-disk system, and a 500 GB SGI. They
determined that the SGI had a 3x speed penalty for having to access disk over their fabric
compared to the 256 GB RAM from MetaRam, a quad socket quad core Opteron, with 64
GB RAM that is “local” to each of the 4 sockets. These benchmarks were useful in
LLNL evaluation of various of large memory systems, and contributed to the decision of
which large memory nodes LLNL would purchase.

We successfully concluded this project, determining which data structures would
be most useful for k-mer computations. Suffix arrays will be used for k-mer enumeration
and sorting, and hashes will be used downstream for postprocessing (e.g. for signature
design) on subsets of those k-mers selected based on their frequencies. Code has been
developed to perform suffix array computations. We worked with the storage-intensive
super computing team, providing them with benchmarking code to run on different
machines for comparison, the results of which figured into decisions as to which large
memory computers LLNL purchased. The results of this study are now being applied to
Intelligence Technology Innovation Center/Office of the Chief Scientist sponsored work
on emerging/engineered/advanced threat detection and to the the LDRD SI “Viral
Discovery Platform”. David Hysom and Peter L. Williams prototyped code for this
project, and Shea Gardner oversaw the project.

Web summary
For the k-mer (n-gram) analysis, suffix arrays are preferred, more memory

efficient and faster than other (e.g. various hashing) methods. A subset of the k-mers

selected based on frequency characteristics can be stored and manipulated in a hash for
downstream tasks such as signature prediction or functional correlations.

We provided test code to storage-intensive super computing collaborators for
benchmarking on different machines, including SiCortex, Violin flash-disk system, and a
500 GB SGI. These benchmarks were useful in LLNL evaluation of various large
memory systems, and contributed to the decision of which large memory nodes LLNL
would purchase.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement
purposes.
Auspices Statement
This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
This work was funded by the Laboratory Directed Research and Development Program at
LLNL under project tracking code 08-FS-014.

